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ASSTRACT

Efficient numerical methods which are usually

used in ea. field problems are applied to solve

Schroedinger’s equation in semiconductors. The

energy band structure of microwave heterostructure

FETs is obtained by solving Poisson’s and

Schroedinger’s equations self–consistently. The

obtained results are used together with a two

dimensional Monte-Carlo code to simulate the

physical operation of the device. The model offers

an accurate and efficient way to determine the DC

and RF characteristics.

INTRODUCTION

Submicrometer hetero-FETs are now widely

applied in microwave and high speed digital

circuits. Many authors investigated various

physical models to characterize the operation and

to optimize the performance of these devices.

Although ~onte-Carlo codes describe electron

transport in bulk materials and in homo-FETs

accurately, special treatments are required to take

the physical phenomena in hetero-structures into

account. These phenomena are determined accurately

by solving Schroedinger-Poisson equations.

A number of authors investigated different

methods to solve Poisson’s and Schroedinger’s

equations self-consistently [1-3]. Finite–

difference methods are usually used to solve

Schroedinger’s equation. The numerical efficiency

of these methods is deteriorated by discretization

and mesh size [3]. The obtained wave functions are

just numerically given so that any further

application of them in calculating the scattering

rates and the carrier transport properties inside

the semi-conductor material requires large CPU [11.

Considering Monte-Carlo models, two main

methods are usually used to simulate the

hetero-FET. The first method applies boundary

conditions on tbe electron transport at the
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heterointerface and permits carrier transfer

between the semiconductor layers under the

conditions of conservation of energy and parallel

momentums to the interface [4-6] . The size

quantization effects are not included and hence

these models are not able to simulate highly doped

devices accurately.

The second method takes size qusntization

into account by introducing a two–dimensional

electron gas region and studying the carrier

transport in that region and in the three-

dimensional one [7,8]. As the derivation of the

two-dimensional scattering rates and of the

coupling between 2D and 3D regions is not an easy

task, the applicability of such models is limited.

On the other hand, these models use an approximated

triangular potential well to derive the scattering

rates what may lead to some errors.

A more accurate determination of the

scattering rates and of the carrier transport

properties is obtained by a self-consistent

solution of Poisson’s and Schroedinger’s equations.

The conventional numerical methods leed, however,

to too large CPU time thus preventing an efficient

device simulation.

In the present work, an efficient method ie

introduced to simulate HFETs accurately. Numerical

techniques which are usually used to solve the

electro-magnetic wave equation [9] are implemented

to obtain the solution of Schroedinger’s equation.

Then numerical difficulties which are overcome

which result from mesh size and discretization [3].

The potential energy distribution inside the

hetero-FRT is determined from a self-consistent

solution of Poisson’s and Schroedinger’s equations.

The obtained results are used together with a

dimensional Monte–Carlo code to determine

physical operation of the device. Validation

efficiency of our model are demonstrated

comparing the obtained results with those

classical models.
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ENERGY BAND MODELING

The energy band is modelled

Schroedinger’s equation which is given

flz d2y/ (y)
t-— + V(y) WL(y) = ELVL(Y)

2 M* a yz

by solving

by

(1)

V(y) = -e#(y) + Vh(Y) + vex(Y) (la)

where #(y) means electrostatic potential , Vh(y)

potential step function at the hetero-interface,

V= (Y) local exchange potential, E eigenenergy,

vilY) wave function corresponding to the~

elgenenergy E , e magnitude of electronic charge, n

effective mask, and ‘h Planck’s constant. Finite

difference methods are usually used to solve (1)

numerically. Their accuracy is, however, limited by

discretization and mesh size [2].

Instead of finite difference we apply the

Rayleigh-Ritz method to obtain the solution in

closed form. This method determines a finite set of

eigenvalues and the corresponding eigenfunctions of

(1) for given boundary conditions. For a semi-

conductor structure of width a, the e igen-

functions satisfy the boundary conditions yf(o)=o,

~(a)=O. They can then be expressed as

N

(2a)

If N is chosen as infinite, the eigenfunctions will

be identical with the set of true eigenfunctions.

However, a finite N still leads to the required

solution with good accuracy [9].

The problem is reduced now to determine the

expansion coefficients a which are used to obtain

the eigenfunctions. Theynkcan be calculated from

the set of homogeneous equations

2=*E*

‘ank~Ln-~ k Ln1
=01=1,2, ,N (3)

n=t

[

dft

TLn= TnL=~a :n — + ‘*V(Y) ft fn 1dy (3a)

o dy dy f-lz

The wave functions are calculated if the potential

energy function V(y) is known. This function is

obtained from the solution of Poissonss equation.

Different potential functions and their

corresponding wave functions are shown in fig.1.
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SELF-CONSISTENT PNWEDUSE

We believe that the solution of the Poisson-

Schroedinger system of equations will become a

common simulation tool for ultra-small and quantum

devices. With our nethod the scattering rates

inside complicated semiconductor structures and the

carrier transport properties are easily obtained by

using the closed forms of the wave functions (2).

Equation (1) and Poiseon’e equation are

solved iteratively until a self-consistent solution

ie obtained. For the first iteration, the potential

energy function V(y) and the corresponding wave

functions are calculated by using the triangular

wave approximation. The electrostatic potential

#(Y) is then calculated by solving Poisson’s

equation. The boundary condition imposed on the

structure state that the differences between the

Fermi level and the bottom of the conduction band

are constant at both ends and equal to difference

values in the bulk. These values are calculated by

knowing the occupancy of the deep centers and the

electron concentration [2].

The new potential energy function is then

calculated using (la). For the next iteration, the

effective potential energy function is expressed as

a linear combination of new and old valuee of V(y)

given by

~e”(Y) =@ vfi*”(Y) + (1+) voLd(Y)v (4)

where u means relaxation constant which is

introduced to obtain the solution safely [61. From

(3) and (3a), the potential energy function V(y)

is used to determine the wave functions which are

used to recalculate the carrier distribution. The

procedure is repeated until initial and final

values of V(y), within the same iteration, differ

by less than a epecified error. The self-consistent

algorithm is illustrated by the flow chart in fig.2

u~i~s ~ trial potential energy V(y) to determine

eigen energies and coresspo.ding wave functmns

Knowing wavefunctions, the carrier density is given by

N

n(y) = E N, IV,[Y>12
, ,,

I
Electrostatic potential is calculated from Poisson’s q

32$+I%Y2= & [n(r) - N;(y)]
or

I

Knowing the electrostatic p.atential, the wave fmtotions

are recalculated br solving Scbmwdinger’s equation.
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The omrgy band i8 determined, and the equivalent wells
are obtained and imerted in a Monte-Carlo simdatim.

Fig. 2 Self -cons i stent solution of POissOn-
Schroedinger equations.

APPLICATIONS AND RESULTS

A two-dimensional Monte-Carlo code is

investigated to simulate the hetero-FET structure

shown in fig.3. The energy band is obtained by

applying the previous self–consistent solution of

Poisson’s and Schroedinger’s equations. It is then

approximated by various shape functions for the

potential well which are subsequently used in a

Monte-Carlo code. The height of the well ie equal

to the eigenenergy EL, while the well width is

given by the distance over which the square of Y

is maximum. The wave functions and equivalen k

energy wells at different sections along the

channel are displayed in fig.4.
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Fig.3 Simulated AIGaAs/GaAs Hetero-FET
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The present model takes the size quantization

into account because the electrons which have

energies less than the barrier height can only move

in two dimensions. Moreover the transfer between

the different regions is simpler than in other

models because no extra scattering rates are

required to be derived. The carrier distributions

inside the device with and without including the

energy band into the simulation are shown in fig.5.

Fig.5 Carrier distribution in the channel

(a) The present model (b) Classical model

V CONCLUSIONS

An accurate and efficient method is presented

to simulate heterostructure devices. By using the

Rayleigh–Ritz method to solve Schroedinger’s

equation, the wave functions are obtained in closed

form which offers an advantage in calculating the

scattering rates and the carrier transport

properties in heterostructures. For simple hetero–

structures, the present method is shown to be

efficient and accurate and the extension for

determining the scattering rates and the carrier

transport properties in complicated structures is

expected to be straightforward.

The obtained wave functions are used to

approximate the energy band inside the

semiconductor device by a number of potential

wells. This method offers an accurate way to model

heterostructure devices in a reasonable CPU time.

The capture of the carriers in the two-dimensional

electron gas region is well simulated (fig. 5) and

tbe transfer between hetero-structure layers is

modelled in a simpler and more efficient way than

with other simulators,
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