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ABSTRACT

Efficient numerical methods which are usually
used in e.m. field problems are applied to solve
Schroedinger’s equation in semiconductors. The
energy band structure of microwave heterostructure
FETs is obtained by solving Poisson’s and
Schroedinger’s equations self-consistently. The
obtained results are used together with a two
dimensional Monte-Carlo code to simulate the
physical operation of the device. The model offers
an accurate and efficient way to determine the DC
and RF characteristics.

INTRODUCTION
Submicrometer hetero~FETs are now widely
applied in microwave and high speed digital
circuits. Many authors investigated various

physical models to characterize the operation and
to optimize the performance of these devices.
Although Monte-Carlo describe electron
transport in bulk materials and in homo-FETs
accurately, special treatments are required to take
the physical phenomena in hetero-structures into
account. These phenomena are determined accurately
by solving Schroedinger-Poisson equations.

codes

investigated different
methods to solve Poisson’s and Schroedinger’s
equations self-consistently [1-3]}. Finite-
difference methods are usually used to solve
Schroedinger’s equation. The numerical efficiency
of these methods is deteriorated by discretization
and mesh size [3]. The obtained wave functions are
just numerically given so that any further
application of them in calculating the gcattering
rates and the carrier transport properties inside
the semi-conductor material requires large CPU [1].

A number of authors

Considering Monte-Carlo models, two main
methods are usually wused to simulate the
hetero-FET. The first method applies boundary
conditions on the electron transport at the
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heterointerface and
between the

carrier transfer
layers under the
conditions of conservation of energy and parallel
momentums to the interface [4-6]. The size
quantization effects are not included and hence
these models are not able to simulate highly doped
devices accurately.

permits
semiconductor

The second method takes size quantization
into account by introducing a  two-dimensional
electron gas region and studying the
transport in that region and in the three-
dimensional one [7,8]. As the derivation of the
two-dimensional scattering rates and of the
coupling between 2D and 3D regions is not an easy
task, the applicability of such models is limited.
On the other hand, these models use an approximated
triangular potential well to derive the scattering
rates what may lead to some errors.

carrier

determination of the
scattering rates and of the carrier transport
properties is obtained by a self-consistent
golution of Poisson’s and Schroedinger’s equations.
The conventional numerical methods 1leed, however,
to too large CPU time thus breventing an efficient
device simulation.

A more accurate

In the present work, an efficient method is
introduced to simulate HFETs accurately.
technigues which are usually used to solve the
electro-magnetic wave equation [9] are implemented
to obtain the solution of Schroedinger’s equation.
Then numerical difficulties which are overcome
which result from mesh size and discretization [3].

Numerical

The potential energy distribution inside the
hetero-FET is determined from a self-consistent
gsolution of Poisson’s and Schroedinger’s equations.
The obtained results are used together with a two-
dimensional Monte-Carlo code to determine the
physical operation of the device. Validation and
efficiency of our wmodel are demonstrated by
comparing the obtained results with those from
classical models.
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ENERGY BAND MODELING

The energy band is modelled by solving
Schroedinger’s equation which is given by ’
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where ¢(y) means electrostatic potential , Vﬁ(y)
potential step function at the hetero-interface,
V (y) local exchange potential, E eigenenergy,
w??y) wave function
eigenenergy E , ¢ magnitude of electronic charge, m
effective mass, and h Planck’s constant. Finite
difference methods are usually used to solve (1)
numerically. Their accuracy is, however, limited by
discretization and mesh size [2].

Instead of finite difference we apply the
Rayleigh-Ritz method to obtain the solution in
closed form. This method determines a finite set of
eigenvalues and the corresponding eigenfunctions of
(1) for given boundary conditions. For a semi-

conductor structure of width a, the eigen-
functions satisfy the boundary conditions % (0)=0,
¥(a)=0. They can then be expressed as
N
z’Uk = ahk fn (2)
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If N is chosen as infinite, the eigenfunctions will
be identical with the set of true eigenfunctioms.
However, a finite N still leads to the required
solution with good accuracy [9].

The problem is reduced now to determine the
expansion coefficients a  which are used to obtain
the eigenfunctions. Theyn can be calculated from
the set of homogeneous equations
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The wave functions are calculated if the potential
energy function V(y) is known. This function is
obtained from the solution of Poisson’s equation.
Different potential functions and their
corresponding wave functions are shown in fig.l.
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Fig.1 Potential energies and corresponding wave
functions
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SELF-CONSISTENT PROCEDURE

¥We believe that the solution of the Poisson-
Schroedinger system of equations will become a
common simulation tool for ultra-seall and quantum
devices., With our method the scattering rates
inside complicated semiconductor structures and the
carrier transport properties are easily obtained by
using the closed forms of the wave functions (2).

Equation (1) and Poisson’s equation are
solved iteratively until a self-consistent solution
is obtained. For the first iteration, the potential
energy function V(y) and the corresponding wave
functions are calculated by using the triangular
wave approximation. The electrostatic potential
¢(y) is then calculated by solving Poisson’s
equation. The boundary conditions imposed on the
structure state that the differences between the
Fermi level and the bottom of the conduction band
are constant at both ends and equal to difference
values in the bulk. These values are calculated by
knowing the occupancy of the deep centers and the
electron concentration [2].

The new potential energy function is then
calculated using (1.a). For the next iteration, the
effective potential energy function is expressed as
a linear combination of new and old values of V(y)
given by

V (y)=wVv (y)+ (1w Vv A(y) (4)
new nev old
where «w means relaxation constant which is
introduced to obtain the solution safely [6]. From

(3) and (3.a), the potential energy function V(y)
is used to determine the wave functions which are

used to recalculate the carrier distribution. The
procedure is repeated until initial and final
values of V(y), within the same iteration, differ

by less than a specified error. The self-consistent
algorithm is illustrated by the flow chart in fig.2
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Self-consistent solution Poisson-

Schroedinger equations.
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APPLICATIONS AND RESULTS

A two-dimensional Monte-Carlo code is
investigated to simulate the hetero-FET structure
shown in fig.3. The energy band is obtained by
applying the previous self-consistent solution of
Poisson’s and Schroedinger’s equations. It is then
approximated by various shape functions for the
potential well which are subsequently used in a
Monte-Carlo code. The height of the well is equal
to the eigenenergy E , while the well width is
given by the distancé over which the square of ¥

is maximum. The wave functions and equivalenk

energy wells at different sections along the
channel are displayed in fig.4.
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Fig.3 Simulated AlGaAs/GaAs Hetero-FET
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The present model takes the size guantization
into account because the electrons which have
energies less than the barrier height can only move
in two dimensions. Moreover the transfer between
the different regions is simpler than in other
models because no extra scattering rates are
required to be derived. The carrier distributions
ingide the device with and without including the
energy band into the simulation are shown in fig.5.

Fig.5 Carrier distribution in the channel
(a) The present model (b) Classical model

V CONCLUSIONS

An accurate and efficient method is presented
to simulate heterostructure devices. By using the
Rayleigh-Ritz method to solve Schroedinger’s
equation, the wave functions are obtained in closed
form which offers an advantage in calculating the
scattering rates and the transport
properties in heterostructures. For simple hetero-
structures, the present method is shown to be
efficient and accurate and the extension for
determining the scattering rates and the carrier
transport properties in complicated structures is
expected to be straightforward.

carrier

The obtained wave functions are used to
approximate the energy band inside the
semiconductor device by a number of potential
wells. This method offers an accurate way to model
heterostructure devices in a reasonable CPU time.
The capture of the carriers in the two-dimensional
electron gas region is well simulated (fig. 5) and
the transfer between hetero-structure layers is
modelled in a simpler and more efficient way than
with other simulators.
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